FastStokes: A Fast 3-D Fluid Simulation Program for Micro-Electro-Mechanical Systems
نویسندگان
چکیده
We have developed boundary integral equation formulas and a corresponding fast 3-D Stokes flow simulation program named FastStokes to accurately simulate viscous drag forces on geometrically complicated MEMS (microelectromechanical systems) devices. Unlike the 3-D finite element or finite difference solvers which often take days to run to completion or fail when geometry gets complicated, the FastStokes 3.0 simulation program is capable of simulating complicated devices such as resonators, accelerometers, and micro-mirrors on PC computers in minutes. The FastStokes 3.0 simulation program is a fast 3-D boundary-element simulation program that uses only surface discretizations. The implementation of the Precorrected-FFT algorithm in combination with the GMRES algorithm substantially improves the speed of this simulation program. An efficient two-step approach that successfully handles the null space of the singular incompressible Stokes BEM operators is developed to avoid numerical errors and solution discontinuities. An analytical flat-panel kernel integration algorithm is implemented in FastStokes and an accurate curved-panel integration algorithm is also developed. Both an incompressible FastStokes solver and a compressible FastStokes solver have been developed and tested. They are not only fast, but also accurate. The incompressible FastStokes solver solves the steady incompressible Stokes equation; the effectiveness of this fast solver has been repeatedly proved by the close matches between numerical simulation results and experiments, within engineering accuracy (5-10% error). The numerical simulation results of a comb drive resonator, the ADXL 76 accelerometer, and a micro-mirror are given. The compressible FastStokes solver solves a linearized compressible Stokes equation that is also capable of capturing the weak air compression effect in MEMS devices. Therefore, the compressible FastStokes solver is a more general simulation program, and it is
منابع مشابه
Simulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm
This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...
متن کاملInvestigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers
Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...
متن کاملInvestigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers
Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...
متن کاملTriangle Transducer for Micro Electro Mechanical Systems (MEMS) Simulation in ANSYS Finite Element Program
The paper introduces a new methodology with a distributed triangle transducer for the strongly coupled simulation of micro electro mechanical systems (MEMS) in ANSYS Finite Element (FE) program.
متن کاملNonlinear Vibration of Smart Micro-Tube Conveying Fluid Under Electro-Thermal Fields
In this study, electro-thermo-mechanical nonlinear vibration and instability of embedded piezoelectric micro-tube is carried out based on nonlocal theory and nonlinear Donnell's shell model. The smart micro-tube made of Poly-vinylidene fluoride (PVDF) is conveying an isentropic, incompressible fluid. The detailed parametric study is conducted, focusing on the remarkable effects of mean flow vel...
متن کامل